Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants
نویسندگان
چکیده
Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron.
منابع مشابه
Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملPreparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance
Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...
متن کاملLoading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملAn Overview of the Application of Poly(lactic-co-glycolic) Acid (PLGA)-Based Scaffold for Drug Delivery in Cartilage Tissue Engineering
Poly(lactic-co-glycolic) acid (PLGA) has attracted a considerable amount of interest for biomedical application due to its biocompatibility, tailored biodegradation rate (depending on the molecular weight and copolymer ratio), approval for clinical use in humans by the U.S. Food and Drug Administration (FDA), the potential to change surface properties to create better interaction with biologica...
متن کامل